Active material utilization and capacity of fiber-based battery electrodes
نویسندگان
چکیده
منابع مشابه
Micrometric Growth of V2O5Hexagonal Nano-plates as an Active Material for Lithium Ion Battery Cathode Electrode
This manuscript reports the synthesis of V2O5 nanostructures using reflux method, without using additives such as surface reactants. The influence of reaction parameters like temperature and concentration on the growth of nanostructures have been investigated. It has been observed that the nanostructures are formed with a hexagonal nano-plate morphology, grown from a common core. The diameter o...
متن کاملCoaxial fiber supercapacitor using all-carbon material electrodes.
We report a coaxial fiber supercapacitor, which consists of carbon microfiber bundles coated with multiwalled carbon nanotubes as a core electrode and carbon nanofiber paper as an outer electrode. The ratio of electrode volumes was determined by a half-cell test of each electrode. The capacitance reached 6.3 mF cm(-1) (86.8 mF cm(-2)) at a core electrode diameter of 230 μm and the measured ener...
متن کاملUtilization based Spare Capacity Distribution
Flexible real-time applications have predefined temporal limits within which they can operate. Real-time systems that support flexible scheduling need a mechanism to distribute spare capacity in a predictable way among the running applications with respect to the applications’ temporal limits and available system resources. This paper introduces a greedy algorithm for spare capacity distributio...
متن کاملElectrical, Mechanical, and Capacity Percolation Leads to High-Performance MoS2/Nanotube Composite Lithium Ion Battery Electrodes.
Advances in lithium ion batteries would facilitate technological developments in areas from electrical vehicles to mobile communications. While two-dimensional systems like MoS2 are promising electrode materials due to their potentially high capacity, their poor rate capability and low cycle stability are severe handicaps. Here, we study the electrical, mechanical, and lithium storage propertie...
متن کاملBiomineralized Sn-based multiphasic nanostructures for Li-ion battery electrodes.
A method for preparing multiphasic hollow rods consisting of nanoscale Sn-based materials through a thermochemical reduction process involving bacteria and Sn oxides is reported. This facile process involves the bacteria-mediated synthesis of SnO(2) nanoparticles that form on bacterial surfaces used as templates at room temperature. The subsequent template removal proceeds via a reduction of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electrochimica Acta
سال: 2020
ISSN: 0013-4686
DOI: 10.1016/j.electacta.2019.134929